


Despite these desirable properties, there are two major ob-
stacles hindering the widespread application of the RL tech-
nology in ad recommendation: 1) how to compute a good
LTV policy in a scalable way and 2) how to evaluate the
performance of a policy returned by a RL algorithm with-
out deploying it, and only using the historical data that has
been generated by one or more other policies. The second
problem, also known as off-policy evaluation, is of extreme
importance not only in recommendation systems and online
marketing, but in many other domains such as health care
and finance. It may also help us with the first problem,
in selecting the right representation (features) for the RL
algorithm and in optimizing its parameters, which in turn
will help to have a more scalable algorithm and to generate
better policies. Unfortunately, unlike the greedy algorithms
for which there exist several biased and unbiased off-policy
evaluation techniques (e.g., [?, 7, ?]), there are not many ap-
plied, yet theoretically founded, methods to guarantee that
the obtained policy performs well in the real system without
having a chance to deploy/execute it.

One approach to tackle this issue is to first build a model
of the real world (a simulator) and then use it to evaluate the
performance of a RL policy [?]. The drawback of this model-
based approach is that accurate simulators, especially for
recommendation systems, are notoriously hard to learn. In
this paper, we use a recently proposed model-free approach
that computes a lower confidence bound on the expected
return of a policy using a concentration inequality [?] to
tackle the off-policy evaluation problem. We also use two
approximate techniques for computing this lower confidence
bound (instead of the concentration inequality), one based
on Student’s ¢-test [?] and the other based on bootstrap
sampling [?].

This off-policy evaluation method takes as input historical
data from existing policies, a baseline policy, a new policy,
and a confidence level, and outputs whether the new policy
is better than the baseline, with the given confidence. This
high confidence off-policy evaluation method plays a crucial
role in many aspects of building a successful RL-based ad
recommendation system. First, it allows us to select a cham-
pion in a set of policies without the need to deploy expensive
A/B testing. Second, it can be used to select a good set of
features for the RL algorithm, and in effect to scale it up.
Third, it can be used to tune the RL algorithm. For exam-
ple, many batch RL algorithms such as fitted Q iteration
(FQI) [?] do not have a monotonically improving perfor-
mance along their iterations. Thus, an off-policy evaluation
framework is useful to keep track of the best performing
strategy along the iterations.

In general, using RL to develop algorithms for LTV mar-
keting is still in its infancy. Related work has used toy ex-
amples and has appeared mostly in marketing venues [?,
?, ?]. An approach directly related to our work first ap-
peared in [?], where the authors used public data of an email
charity campaign and showed that RL policies produce bet-
ter results than myopic. They used batch RL methods and
heuristic simulators for evaluation. [?] recently proposed an
on-line RL system that learns concurrently from multiple
customers. The system was trained and tested on a simula-
tor and does not offer any performance guarantees. Unlike
previous work, we deal with real data, where we are faced
with the challenges of learning RL policies in a high dimen-
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sional problem and evaluating these policies in an off-policy
fashion, with guarantees.

In the rest of the paper, we first summarize the different
methods for computing lower bounds on the performance of
a policy. We then describe the difference between CTR and
LTV metrics for policy evaluation in the ad recommendation
problem, and the fact that CTR could lead to misleading
results when we have returning visitors. We present practi-
cal algorithms for myopic and LTV optimization that com-
bine various powerful ingredients, such as the robustness of
random-forest regression, features selection, and off-policy
evaluation for parameter optimization. Finally, we finish
with experimental results that demonstrate how our LTV
optimization algorithm outperforms a myopic approach.

2. PRELIMINARIES

We assume that the environment can be modeled as a
Markov decision process (MDP), which is a tuple M =
(S, A, P,R,do,7), where S is the set of possible states, which
may be finite, countably infinite, or continuous (uncount-
able), A is the finite set of admissible actions, P(s,a,s’) is
the probability of transitioning to s’ € S when action a € A
is taken in state s € S, R(s,a) € R is the reward received
when action a is taken in state s, do is the initial distribu-
tion over states, and v € [0, 1] is a parameter for discounting
rewards. Furthermore, we assume that the MDP reaches a
terminal state within 7' transitions.

In the context of our ad recommendation problem, S is the
set of possible feature vectors that describe a user, A is the
set of ads that can be displayed, P governs the (unknown)
dynamics of the users, including whether or not they click
on an ad, R(s,a) is 1 when a user in state s clicks on the
ad a, and 0 otherwise. We also set the system horizon to
T = 20, since in our data we rarely have a user with more
than 20 visits to the website.

The agent’s decision rule, which we call a policy, =, is
such that w(a|s) denotes the probability of taking action a
in state s. Each episode (a sequence of at most T changes
to the state, starting from a state drawn from do), produces
a trajectory, T = {s1,a1,7r1,S2,a2,72,...,8T,ar,r7}. We
define R(7) to be the return of trajectory 7, i.e., the sum of
the (discounted) rewards observed along 7. In the off-policy
evaluation method, we use the normalized discounted sum
of clicks, and define R(7) as

o Zthl ~try — R
R(7) = R R ,

where r; is the reward at time ¢ and R— and R4+ are upper
and lower bounds on Zle ~*~1pr,. The goal is to find a

policy that maximizes the expected performance
p(m) = E[R(7)|x].

The goal in RL is to search for a policy that maximizes this
expected performance, p(m) [?].

We assume that a policy (or policies) has been deployed
to produce a history of data, D. Formally, D contains n tra-
jectories {7; }i—, each labeled with the policy ; that pro-
duced it. We call these policies, behavior policies, because
they were used to control the past behavior of the system,
and the policy produced by a RL algorithm (e.g., fitted Q-
iteration or least squares policy iteration) that we would like
to evaluate its performance, the evaluation policy, .



BACKGROUND: OFF-POLICY EVALU-
ATION WITH PROBABILISTIC GUAR-
ANTEES

In this section we review three approaches to off-policy
evaluation that provide strong probabilistic guarantees about
the performance of an evaluation policy, 7., using only the
available historical data, D. Specifically, they compute a
lower bound, p—, on the true performance, p(r), for any
confidence, 1 — § € [0,1]. All three approaches use impor-
tance sampling [?] to create an unbiased estimate of p(me)
from each trajectory, 7 € D. We write p(me|7s, ;) to denote
this estimator, called the importance weighted return, i.e.,

R(m) [ ]

t=1

5 — Te(a;'|si")

pre|mi, mi) - oal]s)

For brevity, we use X; to represent the random variable
p(me, 75, 7). We also use p := %2?21 p(me, Ti, ™) to denote
the sample mean of the importance weighted returns. Since
each of the importance weighted returns is an unbiased es-
timate of p(7), so is their sample mean, i.e., E[p] = p(0).

3.1 Concentration Inequality (CI)

A straightforward approach to provide lower confidence
bounds on the performance of the evaluation policy, p(m),
would be to use the Chernoff-Hoeffding inequality to bound
it using p. However, as shown by [?], this inequality is not
well-suited to this application due to its sensitivity to the
range of the importance weighted returns.

[?] then derived a concentration inequality that is well-
suited to this application by extending the empirical Bern-
stein bound in [?] to have less dependence on the range
of the random variables. This is achieved by bounding a
statistic similar to the truncated mean (unlike the truncated
mean, their statistic does not require discarding data). They
also present a system that automatically estimates the op-
timal threshold beyond which data is truncated. We write
p°1(X,8) to denote the lower bound produced by this ap-
proach, where X is any set of random variables and 1 — ¢ is
the desired confidence level.

3.2 Student’s ¢-Test

The CI approach is safe but overly conservative. One
way to improve it is to introduce additional reasonable as-
sumptions, which can be leveraged to achieve a tighter (less
conservative) bound. One way to do this is to utilize the
central limit theorem (CLT). Specifically, by the CLT, the
sample mean of many samples from any distribution is ap-
proximately normally distributed. For our application, this
means that p becomes approximately normally distributed
as the number of trajectories used to compute it increases.
Therefore, if we assume that p is normally distributed, we
can use Student’s t-test to get a significantly tighter bound
than that of the CI approach (which holds in the more gen-
eral case where there are no assumptions about the true
distribution of p).

While the t-test can produce a significantly tighter bound
than the CI approach, its bound is only approximate due
to the false assumption that p is normally distributed. This
means that, when we desire an error rate of at most ¢, Stu-
dent’s t-test may result in a higher error rate. However,
this is not a significant problem for two reasons. First, in
our application we will have tens of thousands of users, each
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of which produces a trajectory. With this many trajecto-
ries, by the CLT, p might be almost normally distributed.
Second, because the importance weighted returns tend to
come from a distribution with a heavy upper tail [?], the ¢-
test tends to produce overly conservative lower bounds. We
write p= T (X, §) to denote the lower bound produced by this
approach, where X is any set of random variables and 1 —§
is the desired confidence level. More formally, we have

i (Xi - X>27

1 1
X =— X =
nlzzl © 7 n—1

- o
Pt (X,8) =X — N

where t1_s,, denotes the inverse of the cumulative distribu-

tion function of the Student’s ¢ distribution with v degrees of

freedom, evaluated at the probability 1—4 (i.e., tinv(1—4,v)

in MATLAB).

3.3 Bias Corrected and Accelerated Bootstrap

As mentioned in Section 3.2, when p is far from being
normally distributed, the lower bound produced by the t-
test approach, pET(X, 4), may not be accurate. One way to
address this issue is first to use bootstrapping to estimate
p’s true distribution, then use this estimate to transform the
data so that it is approximately normally distributed, and
finally apply the t-test to this transformed data. A popular
method for this sort of bootstrapping is Bias Corrected and
accelerated (BCa) bootstrap [?]. We write p2°*(X, ) to
denote the lower-bound produced by BCa, where X is any
set of random variables and 1 — § is the desired confidence
level.

The primary drawback of this approach is that the distri-
bution of p is only approximated, and thus, after being trans-
formed it is still only approzimately normally distributed.
This means that the ¢-test still does not produce an exact
bound. However, by correcting for the heavy tails in our
data, BCa tends to produce lower bounds that are not as
overly-conservative as using Student’s t¢-test directly. Al-
though the bounds produced by BCa are only approximate
(they can have an error rate higher than 6), they have been
considered reliable enough to be used in many different do-
mains, particularly in medical fields [?, ?]. Detailed infor-
mation on the implementation of BCa can be found in [?].

4. CTR VERSUS LTV

Any ad recommendation policy could be evaluated for its
greedy /myopic or long-term performance. For greedy per-
formance, click through rate (CTR) is a reasonable metric,
while lifetime-time value (LTV) seems to be the right choice
for long-term performance. These two metrics are formally
defined as follows:

Total # of Clicks «
Total # of Visits

CTR = 100,

Total # of Clicks

LTV =
v Total # of Visitors

100.

CTR is a well-established metric in digital advertising and
can be estimated from historical data (off-policy) in unbiased
(inverse propensity scoring; [?]) and biased [?] ways. [?] re-
cently proposed a practical approach for LTV estimation,



which we both extend, by replacing the concentration in-
equality with ¢-test and BCa, and apply for the first time
to real online advertisement data. The main reason that we
use LTV is that CTR is not a good metric for evaluating
long-term performance and could lead to misleading conclu-
sions. Imagine a myopic advertising strategy at a website
that directly displays an ad related to the final product that
a user could buy. For example, it could be the BMW web-
site and an ad that offers a discount to the user if she buys a
car. Users who are presented such an offer would either take
it right away or move away from the website. Now imagine
another marketing strategy that aims to transition the user
down a sales funnel before presenting her the discount. For
example, at the BMW website one could be first presented
with an attractive finance offer and a great service depart-
ment deal before the final discount being presented. Such a
long-term strategy would incur more interactions with the
customer and would eventually produce more clicks per cus-
tomer and more purchases. The crucial insight here is that
the policy can change the number of times that a user will be
shown an advertisement—the length of a trajectory depends
on the actions that are chosen. A possible visualization of
this concept is presented in Figure 1.

Policy 1
g CTR=0.5
G LTV=0.5
Policy 2
CTR=6/17=0.35
LTV=6/4=1.5
O >O—O0——0—@

Figure 1: The circles indicate user visits. The black
circles indicate clicks. Policy 1 is greedy and users
do not return. Policy 2 is optimizes for the long-run,
and users come back multiple times and click toward
the end. Even though Policy 2 has a lower CTR than
Policy 1, it results in more revenue, as captured by
the higher LTV. Therefore, LTV is a better metric
for evaluating policies for ad recommendation than
CTR.

S. RECOMMENDATION ALGORITHMS

For greedy optimization, we used the random forest al-
gorithm [?] to learn to map features to actions. Random-
forests is a state of the art ensemble learning method for
regression and classification, which is robust to overfitting,
and which is often used in industry for big data problems.
The system is trained by using a random forest for each of
the offers/actions to predict the immediate reward. During
execution we use an epsilon-greedy strategy where we choose
the max prediction with probability 0.9 and amongst the rest
of the offers with probability 0.1/(]A| — 1), see Algorithm 1.
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Algorithm 1 GREEDYOPTIMIZATION(X¢rain, Xtest, 0)
compute a greedy strategy using X¢rain, and predict the 1—9
lower bound on the test data Xiest and the value function.

1: y = Xirain(reward)

2 = Xyrain (features)

Z = informationGain(z, y) {feature selection}

rf, = randomForest(Z,y) {for each action}

me = epsilonGreedy (rf, Xest)

mp = randomPolicy

W = p(7e|Xtest, ™) {importance weighted returns}
return (p' (W, 6),rf) {bound and random forest}

For the LTV optimization problem we used a state of the
art RL algorithm called FQI [?], which is able to handle high
dimensional continuous and discrete variables. Due to vari-
ous implementation constrains of the company we used the
random forest as the function approximator. When an arbi-
trary function approximator is used in the FQI algorithm it
does not converge monotonically but rather oscillates dur-
ing training iterations. To alleviate oscillation problems of
FQI using random forest and for better feature selection,
we used our evaluation framework within the training loop.
The loop keeps track of the best FQI result according to a
validation data set, see Algorithm 2.

Algorithm 2 LTVOPTIMIZATION (X¢rain, Xval, Xtest, 0, K, Y)
: compute a LTV strategy using Xirain, and predict the 1—4¢
lower bound on the test data Xiest
1: m = randomPolicy
2: Q RF.GREEDY (X rain, Xtest,0) {start with greedy
value function}

3: fori=1to K do
4 7 = X¢rain(reward) {use recurrent visits}
5: & = Xyrain(features)
6: Yy =1+ ymaxeea Qao(Tet1)
7: & = informationGain(z, y) {feature selection}
8: Q. =randomForest(Z,y) {for each action}
9:  me = epsilonGreedy(Q, Xva1)
10: W = p(me|Xval, m) {importance weighted returns}
11:  currBound = p! (W, §)
12:  if currBound > prevBound then
13: prevBound = currBound
14: Qbest = Q
15:  end if
16: end for

17: m. = epsilonGreedy(Qbest, Xtest )
18: W = p(me|Xsest, mb)
19: return p! (W, d) {lower bound}

6. EXPERIMENTS

For our experiments we used a data set from the banking
industry. On the company website when customers visit,
they are shown one of a finite number of offers. The reward
is one when a user clicks on the offer and zero otherwise.
We extracted/created features, in the categories shown in
Table ??7. We collected data from a particular campaign for
a month that had seven offers and approximately 200,000 in-
teractions. About 20,000 of the interactions were produced
by a random strategy. When users visit the bank web-site



the first time, they are assigned either to a random strategy
or a targeting strategy for the rest of the campaign lifetime.
We split the random strategy data into a test set and a
validation set. We use the targeting data for training to
optimize the greedy and LTV strategies described in Algo-
rithms 1 and 2. We used aggressive feature selection, for
the greedy strategy and selected 20% of the features. For
LTV the feature selection had to be even more aggressive
due to the fact that the number of recurring visits is ap-
proximately 5%. We used information gain for the feature
selection module. With our algorithms we produce perfor-
mance results both for the CTR and the LTV metric. To
produce results for CTR we assumed that each visit is a
unique visitor.

There is one variable for each offer,
which counts the number of times
each offer was shown

Cum action

Visit time recency | Time since last visit

Cum success Sum of previous reward

Visit The number of visits so far

The last time there was
positive reward

Success recency

Longitude Geographic location [Degrees

Latitude Geographic location [Degrees

Day of week Any of the 7 days

User hour Any of the 24 hours

Local hour Any of the 24 hours

User hour type Any of weekday-free, weekday-busy,
weekend

Operating system | Any of unknown, windows,
mac, linux

Interests There are finite number of interests
for each company. Each interest
is a variable hat gets a score
according to the content of areas
visited within the company websites

Demographics There are many variables in this

category such as age, income,
home value...

Table 1: Features

From our experimental results we first observed that with-
out any feature selection we would not see any lift from
the random policy. With aggressive feature selection we are
able to produce incredible lifts using both the greedy and
LTV approaches. Second, we observed that every strategy
has both a CTR and an LTV metric, as shown in Figure
??. Third, we observed that the GREEDYOPTIMIZATION al-
gorithm performs the best under the CTR metric and the
LrvOPTIMIZATION algorithm performs the best under the
LTV metric as expected, see Figures 7?7 and ??. Fourth, we
observed that the bounds for the t-test are tighter than those
of CI, but they make the false assumption that importance
weighted returns are normally distributed. See Figures 77
and ??. Finally we observed that the bounds for BCa seem
to give slightly higher confidences than the ¢-test approach
for same performance. These bounds do not make a Gaus-
sian assumption, but still make the false assumption that
the distribution of future empirical returns will be the same

as what has been observed in the past, see Figures 7?7 and
29
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Figure 2: This figure shows the bounds and em-
pirical importance weighted returns for the random
strategy. It shows that every strategy has both a
CTR and LTV metric.

7. SUMMARY AND CONCLUSIONS

In this paper we described an approach for successfully
training and evaluating personal ad recommendation strate-
gies. We used off policy evaluation frameworks with statisti-
cal guarantees to help us test the performance of the policies
but to also optimize the algorithm parameters. We used the
conservative CI bound that makes no assumption about the
form of the distribution of returns, but also approximate
bounds that make a false assumption. We expect the CI
bound to get better as we include more data for evaluation.
However, the approximate bounds seem to give clear ranking
of the different strategies.

Overall in this paper we make multiple contributions. First,
unlike most existing work on recommendation systems, we
tackled the problem of life-time value recommendations and
show how this approach gives us the best results. We were
able to solve a real world problem efficiently with a relatively
small campaign. Second, we identified the relationship be-
tween CTR and LTV and demonstrated with examples and
experiments why CTR is not a good measure for the per-
formance of LTV systems. Third, we are the first to apply
LTV metrics and bounds to real world data. And fourth,
we combined state of the art ingredients such as off-policy
evaluations, the power of of random-forest regression and
aggressive feature election to devise efficient optimization
algorithms both for CTR and LTV.
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