
Learning to Detect Event-Related Queries for Web Search

Nattiya Kanhabua
L3S Research Center

Leibniz Universität Hannover
Hannover, Germany

kanhabua@L3S.de

Tu Ngoc Nguyen
L3S Research Center

Leibniz Universität Hannover
Hannover, Germany

tunguyen@L3S.de

Wolfgang Nejdl
L3S Research Center

Leibniz Universität Hannover
Hannover, Germany

nejdl@L3S.de

ABSTRACT
In many cases, a user turns to search engines to find infor-
mation about real-world situations, namely, political elec-
tions, sport competitions, or natural disasters. Such tempo-
ral querying behavior can be observed through a significant
number of event-related queries generated in web search.
In this paper, we study the task of detecting event-related
queries, which is the first step for understanding temporal
query intent and enabling different temporal search appli-
cations, e.g., time-aware query auto-completion, temporal
ranking, and result diversification. We propose a two-step
approach to detecting events from query logs. We first
identify a set of event candidates by considering both im-
plicit and explicit temporal information needs. The next
step further classifies the candidates into two main cate-
gories, namely, event or non-event. In more detail, we lever-
age different machine learning techniques for query classi-
fication, which are trained using the feature set composed
of time series features from signal processing, along with
features derived from click-through information, and stan-
dard statistical features. In order to evaluate our proposed
approach, we conduct an experiment using two real-world
query logs with manually annotated relevance assessments
for 837 events. To this end, we provide a large set of event-
related queries made available for fostering research on this
challenging task.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation

Keywords
Query Intent; Temporal Query Classification; Events

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2741698.

0.00*10
0

1.00*10
-
4

2.00*10
-
4

3.00*10
-
4

4.00*10
-
4

5.00*10
-
4

6.00*10
-
4

7.00*10
-
4

8.00*10
-
4

9.00*10
-
4

1.00*10
-
3

M
ar 02

M
ar 14

M
ar 26

Apr 07

Apr 19

M
ay 01

M
ay 12

M
ay 24

n
o

rm
a

liz
e

d
 q

u
e

ry
 v

o
lu

m
e

time

Temporal dynamics of event-related queries

ncaa printable bracket
ncaa schedule
ncaa results
american idol voting
american idol results
american idol final

Figure 1: Temporal querying behavior of two real-world
events: (1) ncaa tournament, and (2) american idol.

1. INTRODUCTION
People are naturally interested in searching about high-

impact events like political elections, major sports compe-
titions, aviation accidents or earthquakes, in order to keep
track of ongoing discussions, or get updated about an an-
ticipated event or an aftermath following the previous in-
cident. This can be regarded as a collective attention or a
crowd phenomenon observable through a significant number
of queries generated around such happenings. In Figure 1,
we illustrate temporal querying behavior, or changes in the
popularity of queries related to two real-world events. The
first event is a NCAA tournament1, a major sports compe-
tition in the United States held annually and organized by
the National Collegiate Athletic Association (NCAA).

Another event is American Idol2, which is an American
reality-singing competition. For such a case, underlying in-
formation needs change over time, which reflect the tem-
poral aspects or topics of an event. As depicted, relevant
searches for a NCAA tournament are ncaa printable bracket,
ncaa schedule, and ncaa results, whereas search queries re-
lated to American Idol are american idol voting, american
idol results, and american idol final. On the one hand, a pre-
event activity like tournament brackets triggers a burst in
query streams around the beginning of the event on March
14, 2006. On the other hand, information about schedule
and results gains increased interest only after the event has

1http://en.wikipedia.org/wiki/NCAA_tournament
2http://en.wikipedia.org/wiki/American_Idol

1339

started, with less query popularity before that. The Amer-
ican Idol program was displayed on a weekly basis, thus
public attentions about audience voting and results exhibits
periodic patterns, while the final contest is surged in impor-
tant on the last program shown on May 24, 2006.

Temporal web dynamics are related to user querying be-
havior in at least two ways. First, as shown in the above
example, search traffic for particular queries varies over time
and might present certain temporal patterns, such as, spikes,
periodicity (e.g., hourly or daily), seasonality and trends.
Second, many queries are time-sensitive queries, i.e., con-
tain underlying temporal information needs that do not ex-
hibit a temporal pattern in search streams. More precisely,
event-related queries can be regarded as queries that con-
tain temporal information needs, which are categorized into
two main classes. The first class of temporal queries is ob-
served through temporal patterns of user search behaviors
in query logs, such as, burstiness, trend or seasonality [18].
The second class of event-related queries may not exhibit
such temporal patterns in a query stream, but the underly-
ing temporal information needs can be either (1) represented
by temporal expressions explicitly mentioned in queries [17],
or (2) implicitly associated with a particular time period
with no temporal expressions given [11]. Examples of ex-
plicit temporal queries are US Election 2012 and 2014 FIFA
World Cup, whereas queries without explicit temporal ex-
pressions can be, for instance, Easter, Thailand tsunami and
Germany World Cup.

In this paper, we address the problem of identifying event-
related queries in search streams. This problem is crucially
important to understand temporal search intent and enable
the development of advanced models and algorithms within
the temporal search realm. There are existing works that are
relevant in this context including: 1) studying event-driven
search behavior in query logs, e.g., [10, 18], 2) temporal
query classification, e.g., [9, 19, 2, 23], and 3) determining
time for implicit temporal queries, e.g., [11, 3].

Our work differs from the aforementioned works to some
extent. We consider two main aspects of event-related queries:
(1) such queries can be observed through temporal querying
patterns in query logs, and (2) they may not exhibit such
temporal patterns in a query stream, but contain underly-
ing temporal information needs. This is contrary to most of
the previous works, which have studied only on a particu-
lar aspect, e.g., to study either implicit or explicit temporal
information needs, separately. On the other hand, the Tem-
poralia challenge [8] provides a test set for temporal query
intent classification (TQIC) consisting of approximately 400
temporal queries categorized into predefined classes based on
their implicit or explicit temporal intent. Therefore, many
recent works participating in this challenging TQIC task,
for instance, the work by Burghartz and Berberich [2], are
also related to our work. However, this task focuses only on
the later stage of our work that does not deal with a large
amount of candidate queries in a data stream setting.

Our contributions can be summarized as follows.

• We propose a two-step approach for detecting event-
related queries from public web search logs, namely,
1) event candidate identification, and 2) event-related
query classification.

• We evaluate our proposed approaches using a large set
of queries and make it available3 for fostering further
research on this challenging task.

3http://www.l3s.de/~kanhabua/data/EventQueries.zip

2. OVERVIEW
Data Model. Our data consists of the sets of queries Q,

URLs U and click-through information. Each query q ∈ Q
contains query keywords or term(q), the timestamps of query
time(q) or the time point when it was issued (so-called hit-
ting time), and an anonymized ID of the web search user
who submitted the query. A clicked URL u ∈ Uq refers to
a web document returned as an answer for a given query q,
which has been clicked by the user. The click-through infor-
mation is a transactional record per query for each clicked
URL, i.e., an associated query q, a clicked URL u, the po-
sition in the ranked list of results, and its timestamps. In
addition, we employ a temporal document collection, which
contains documents that are temporally-ordered and it can
be represented as D = {d1, . . . , dn}. A document is regarded
as bag-of-words (an unordered list of terms, or features):
d = {w1, . . . , wn}. PubTime(d) is a function that gives the
publication date of the document.

A real-world event of interests is a happening that in-
volves or attracts public attention, e.g., ceremony, compe-
tition, convention, meeting, festival, etc. An event-related
query qe corresponding to a real-world event e, where the
event time time(e) indicating when an event e has actually
taken place. The temporal aspect of the event e represented
as time(q, e) can be determined by considering time(e) with
respect to time(q), which can refer to one of the time periods
before, during and after.

Problem Statement. This works aims at detecting
event-related queries in two steps: 1) automatically extract-
ing a set of query candidates {q1, . . . , qn} from the query
logs Q, and 2) classifying candidates as a set of event-related
queries {qe1, . . . , qem} using machine learning, which will be
described in more detail in the next section.

3. OUR APPROACH
The first step is to identify a set of event candidates or

queries related to real-world events. The next step is to
classify the candidates into two categories, i.e., event or non
event. For this purpose, we present different features for
training a query classification model.

3.1 Identifying Event Candidates
Explicit temporal queries can be automatically extracted

using a time and event recognition algorithm [12, 20]. We
identify implicit temporal queries by looking for those ex-
hibiting changes in query popularity or burstiness in query
streams. Due to a short time span of the query dataset,
we mine seasonality patterns using an external, temporal
document collection. Our method for identifying implicit
queries is based on keyword-based clustering (depicted in
Algorithm 1) that is chosen rather than a technique rely-
ing on query-URL bipartite graphs because a graph-based
processing of millions of queries can be infeasible [22]. The
proposed keyword-based clustering is performed in two steps
as follows.

Step 1. Given all distinct queries, we partition query log
streams by a weekly granularity in order to roughly group
queries from the same events together. Our intuition is that
event-related queries are usually issued around the same
time within a short period, e.g., days or a week. How-
ever, a time-based partition cluster often contain queries
from multiple, unrelated events, so we further perform a
clustering step based on lexical similarity in order to find a
set of queries corresponding to an individual event.

1340

Algorithm 1 KeywordClusteringByTime(Q)

1: INPUT: Set of real-world search queries Q
2: OUTPUT: Clusters of queries C
3: for each {Qpartition ∈ Q} do
4: Qsort ← sort(Qpartition) // sort alphabetically
5: S ← set() // create empty set
6: for each {qi ∈ Qsort ∧ freq(qi) ≥ α ∧ freq(qi) ≤ β} do
7: S.put(qi)
8: if JaccardSim(qi, qi+1) ≥ θ then
9: S.put(qj)

10: else
11: C.add(S) // add S to C as a query cluster
12: end if
13: end for
14: end for
15: return C

Step 2. Given the sets of queries grouped by time, we sort
all queries alphabetically and identify a pair of sorted queries
by searching for any two adjacent queries. For each pair,
we apply stop-word removal and stemming, then compute
their similarity using the Jaccard similarity coefficient. We
assign each query pair into the same cluster if their similarity
score is above a certain threshold, which will be determined
empirically. The clustering process will be repeated until all
query partitions are processed. Our final results contain a
set of clusters, where each of them is corresponding to an
event. An example cluster generated using our algorithm
comprising a set of queries related to the event Easter are
shown below.

Easter - easter 2006, easter 2007, easter 20crafts,
easter activities, easter animation, easter ani-
mations, easter background, easter basket, easter
bread, easter bucket, easter bunny, easter bunny
decorations, easter bunny lights

3.2 Event-Related Query Classification
Our method is based on a machine learning technique

trained using a feature set aimed at detecting periodic, trend-
ing, sporadic (rare), and unseen events. It is composed of
time series features from signal processing [1, 4, 7], along
with features derived from click-through information [5], and
standard statistical features [9, 13]. For a given query, we
extract daily time series data from three data sources: 1) Q,
the normalized query volume aggregated across all users over
time, 2) U , the normalized click frequency for the query ac-
cumulated from all URLs and users, and 3) D, the temporal
distribution of number of top-k search results retrieved from
an external document collection. For each query candidate q
issued at hitting time time(q), we extract a set of time series
data Y = {YQ, YU , YD} as input for our feature extraction
process, where Yi corresponds to data from the aforemen-
tioned sources. In the following, we present our feature set.

Seasonality is a temporal pattern that indicates how pe-
riodic is an observed behavior over time. Previous work [19]
employs seasonality for detecting seasonal queries correspond-
ing to events that repeat every year, e.g., US Open, Hal-
loween and Christmas. However, we leverage this feature
for detecting more fine-grained periodic events that recur-
ring on a weekly basis, such as, a TV show program. In
order to extract the seasonality component, time series data
can be decomposed by different statistical techniques [4, 7],
called a time-series decomposition process. Given a time
series Y = {y1, ..., yN} where N is the total number of ob-
served values, we apply Holt-Winters adaptive exponential

smoothing [7] to construct the statistical decomposition of
time series input, which can be either the aggregated query
volume or the distribution of top-k retrieved documents over
time. The output consists of three components: level L,
trend T and seasonality S. The trend represents the long-
term direction of the time series. We use trending scope and
trending amplitude as features for classification.

The seasonality component S is significantly important
for estimating the seasonal characteristic of a given time
series Y . The final score can be calculated using a similarity
metric, i.e., the cosine similarity between the original time
series Y to its derived seasonality component S as follows.

Seasonality(Y, S) =
~Y ~S

‖ ~Y ‖ · ‖ ~S ‖
(1)

Autocorrelation is the cross correlation of a signal with
itself or the correlation between its own past and future val-
ues at different times. We employ autocorrelation as an
additional feature for detecting a trending event, which can
be categorized by its predictability. When an event contains
strong inter-day dependencies, the autocorrelation value will
be high. Given observed time series values {y1, ..., yN} and
its mean ȳ, autocorrelation is the similarity between obser-
vations as a function of the time lag l between them.

Autocorrelation(Y, l) =

N−k∑
i=1

(yi − ȳ)(yi+l − ȳ)

N∑
i=1

(yi − ȳ)2
(2)

In this work, we consider autocorrelation at the one time
unit lag only (l = 1), which shifts the second time series
by one day. This is called the first-order autocorrelation
of the first N − 1 observations {y1, ..., yN−1} and the next
N −1 observations {y2, ..., yN}. In addition, we also employ
the features global trend and local trend for detecting
popular events.

In order to detect unseen events that become popular re-
cently, we employ the feature prediction error, which has
been proposed by Radinsky et al. [18] for capturing sur-
prises in querying behavior streams. Specifically, a surprise
represents an unplanned event happening when there is a
significant error in the residuals of a prediction model, i.e.,
by computing the sum of squared errors of prediction (SSE).
The score implies how unplanned is the time series at a given
time point. Given a time series Y = {y1, ..., yN}, we esti-

mate its predicted values Ŷ = {ŷ1, ..., ŷN} using a simple
linear regression model. The surprise score of Y with re-

spect to Ŷ at time(q) can be calculated as:

SSE(Y, Ŷ) =

N∑
i=1

(yi − ŷi)
2 (3)

Click entropy is a measurement of query click variation
over a set of URLs U = {u1, ..., uj} for a given query q, which
is originally proposed in [5] and used for improving the per-
sonalized web search task. Intuitively, smaller click entropy
means less variation among individuals, that is, users agree
with each other on a small number of web pages, whereas
higher click entropy indicates that many web pages were
clicked for the query. We regard this measurement as a sig-
nal of temporal content dynamics [14], which is an indirect
indication of events in query streams.

1341

ClickEntropy(Uq) =
∑
u∈Uq

−P (u|q) logP (u|q) (4)

where Uq is a set of clicked URLs for a given query q at
time t, and the final value will be aggregated over the last n
days with respect to the hitting time time(q). P (u|q) is the
probability of u being clicked among all the clicks on q:

P (u|q) =
|click(u, q)|∑

ui∈Uq
|click(ui, q)| (5)

We take into account other statistical features on time
series data, such as, burstiness, kurtosis and temporal KL-
divergence. We make use of various burstiness character-
istics, i.e., the number of bursts, the maximum weight, the
longest duration, and the distance between the maximum
burst and hitting time, using the burst detection algorithm
proposed in [13].

Temporal KL-divergence was proposed in [9] to de-
termine temporal classes of queries and it is measured as
the difference between the distribution over time of top-k
retrieved documents Dq with respect to q and the document
collection D. Similarly, we use temporal KL-divergence for
capturing the temporality of a given query with respect to its
top search results. Note that, this feature is only generated
from an external document collection as follows.

TemporalKL =
∑
t∈T

P (t|q) log
P (t|q)

P (t|T)
(6)

where T is the set of all publication dates in the document
collection D. P (t|T) is the probability of a publication date
t in the collection D. P (t|q) is the probability of generat-
ing a publication date t given q by considering the top-k
retrieved documents Dq and their relevance scores. In this
paper, our retrieval model is based on relevance language
modeling [15], that is, the top-k retrieved documents Dq are
considered and weighed according to the document’s prob-
ability of relevance.

P (t|q) =
∑
d∈Dq

P (t|d)
P (q|d)∑

d′∈Dq
P (q|d′) (7)

where P (q|d) is a retrieval score of d for a particular ranking
model. P (t|d) is equal to 1 if PubTime(d) = t, and 0 if
PubTime(d) 6= t.

Inspired by the previous work [9], we employ kurtosis,
which is a basic statistic method to measure the peaked-
ness or skewness of a probability distribution. Intuitively,
kurtosis can capture sporadic or spiky events, e.g., break-
ing news, celebrities, and short-span events. It quantifies
how much of the probability distribution is contained in the
peaks, and how much in the low-probability regions. Kur-
tosis is calculated as the ratio of the fourth moment and
variance squared.

We also consider information about named entities (i.e.,
person, location and organization) and temporal expressions.
Consequently, we leverage such information as features with
a binary value, e.g., whether a query contains a temporal
expression, or it refers to a name of person, organization or
location. To this end, we exploit the statistics of a cluster
c derived from the method explained in Section 3.1, e.g.,
the number of distinct queries in c, as well as the maximum
number, the average, and the sum of query frequencies in c.

Table 1: Statistics of the two query datasets.

Dataset AOL MSN

Queries 18,614,850 6,015,318
Unique queries 1,087,259 268,271
Unique URLs 545,223 788,441
Click-through 1,689,712 4,894,418

Explicit temporal queries
Automatically identified 19,531 2,728

Labeled as events 256 117

Implicit temporal queries
Automatically identified 121,176 17,009

Labeled as events 305 159

4. EVALUATION
In the following, we explain our experimental setting in-

cluding the description and statistics of query log datasets,
relevance assessment, parameters as well as studied methods
for comparisons. Finally, we discuss experimental results
that show the performance of our approach.

4.1 Experimental Setting
Query Log Datasets. We used two real-world query

log datasets publicly available. The first dataset is the AOL
query logs, which consists of more than 30 million queries
covering the period from March 1, to May 31, 2006. The
second dataset we used is the MSN query logs4 composed
of about 15 million queries sampled from May 2006. User
information is anonymized and adult search queries are ig-
nored from the study. We followed data filtering steps sug-
gested in [24] as follows: 1) removed all non-English queries,
2) converted queries into lower case, 3) ignored queries with
frequency less than 5 (for filtering noisy data), 4) ignored
those with frequency more than 15,000 (i.e., navigational
queries, which are not useful for our study), and 5) removed
click-through data with frequency less than 3.

After applying the pre-processing steps, we further filtered
the candidates (identified by the method described in Sec-
tion 3.1) using a heuristic based on the cluster statistics (e.g.,
the number of queries and the sum of query frequencies).
In total, we randomly selected over 20,000 candidates for
manually labeling and identified 837 event-related queries.
A query is regarded as event-related if it refers to, or re-
lated to a real-world event happening in the past, present
or future. In addition to assign a query to each of temporal
classes, we also constructed the temporal fact, e.g., infor-
mation about time and locations of events, using external
sources, such as, Wikipedia, a news archive portal and a
search engine. Knowing the precise temporal information of
events is crucially important for validating our time-aware
ranking method. The statistics of our datasets are shown in
Table 1, and the overview of existing datasets in this line of
work is presented in Table 2.

Parameter Setting. We employed HeidelTime [20] for
temporal expression extraction. The cleansing step of event
candidate identification requires parameters: Jaccard simi-
larity threshold was 0.2; edit distance threshold was 3; and
the overlap n-gram was 2 terms. For burstiness features, we
used the burst detection technique provided by CISHELL5)
with default parameters.

4http://research.microsoft.com/~nickcr/wscd09/
5http://wiki.cns.iu.edu/display/CISHELL/Burst+
Detection

1342

Table 2: Comparison of existing temporal query datasets.

Kulkarni et al. [14] Bing (25/03/2010 - 28/05/2010)
100 temporal queries

Shokouhi [19] Bing (2006 - 2010)
74 seasonal queries

Radinsky et al. [18] Bing (15/12/2010 - 25/04/2011)
504 dynamic queries
330 temporal-reformulation queries
1,836 alternating queries

Kairam et al. [10] Bing (19/07/2012 - 30/08/2012)
393 trending queries
218 (filtered) trending queries

Our work AOL (01/03/2006 - 31/05/2006)
561 event-related queries
MSN (01/05/2006 - 31/05/2006)
276 event-related queries

Metrics. We employed several classifiers, i.e., support
vector machine (SVM), AdaBoost, decision tree (J48), and
neural network (NN). For assessing the performance of clas-
sification, we measured accuracy, precision, recall and F-
measure. All classification methods were performed using
10-fold cross validation.

4.2 Experimental Results
Feature Selection Results. For getting a first idea of

high impact features we start our feature selection analysis.
In general there are three main strategies for feature selec-
tion, filter, wrapper and embedded. While the filter strategy
is independent from the classifier and can be computed in
a pre-processing step, wrapper and embedded methods de-
pends on the classifier in a sense that the wrapper strategy is
selecting the best feature-subset with the best performance
and the embedded feature selection is directly bonded in
the learning algorithm. In this work, we focus on the filter
strategy with an univariate method since we want to inves-
tigate the importance of the features independent from the
classification method.

For this purpose we used the InfoGainAttributeEval from
the WEKA tool, which evaluates the features by considering
the information gain of the feature with respect to the class
and rank them based on their weight. The resulting top-20
features are shown in Table 3, where Q, U , and D denote
features extracted from the aggregated query volume, click-
through information, and the temporal document collection,
respectively.

We notice that the most discriminative features cover fea-
tures derived from the temporal document collection, and
the query streams. Regarding top-10 features in the list,
temporalKL and kurtosis, which are measured using the dis-
tribution over time of top-k retrieved documents, are among
the most influential ones. In addition, trend-based features
or those categorizing trending events, such as, autocorrela-
tion, burst weight, and trending level, also play an important
role for query classification. Interestingly, the click-through
features are outperformed by simple features like the maxi-
mum number, and the sum of queries in a cluster. We also
observe that the seasonality computed from the query logs
has less impact than the one extracted from the document
collection. Our explanation is that the longer the time span,
the better the seasonality pattern can be recognized.

Table 3: Top-20 features ranked by the information gain.

Rank Feature Weight Source
1 TemporalKL 0.336 D
2 Autocorrelation 0.336 D
3 Kurtosis 0.225 D
4 Seasonality 0.222 D
5 Max. Query Freq. 0.090 Q
6 Burst Weight 0.072 Q
7 No. of Queries 0.050 Q
8 Kurtosis 0.049 Q
9 Trending Level 0.039 Q
10 Sum Query Freq. 0.029 Q
11 Click Entropy (14 days) 0.028 U
12 Person Entity 0.027 Q
13 SSE 0.024 Q
14 Autocorrelation 0.023 Q
15 Avg. Query Freq. 0.021 Q
16 Seasonality 0.016 Q
17 Click Entropy (3 days) 0.012 U
18 Max. Query Freq. 0.010 Q
19 Distance Max Burst 0.008 Q
20 Trending Scope 0.006 Q

Table 4: Performance of different classifiers.

Model Accuracy Precision Recall F-Measure

SVM 0.677 0.781 0.676 0.551
AdaBoost 0.792 0.788 0.792 0.783

NN 0.834 0.832 0.834 0.833
J48 0.904 0.904 0.905 0.904

Classification Results. The overall results for query
classification are shown in Table 4. It can be seen that
the decision tree model (J48) gives the best performance
(of about 90% in all metrics), while SVM is the worst per-
forming model compared to other classification algorithms.
To understand further the impact of individual feature the
event-related query classification performance, we compute
the performance of each individual feature from the top-k
features ranked by the information gain method. Figure 2
illustrates the classification performance (using J48) by in-
crementally adding an individual feature for training the
model. When using only temporalKL, we obtain the accu-
racy of approx. 84%. It gains an increased performance
by adding the features autocorrelation, kurtosis, and season-
ality. However, the performance has dropped after adding
max. query freq. and so on. To summarize, our experimen-
tal results identify a core set of features that can capture the
most discriminative representatives for event-related query
classification. This is valuable, not only for building models
more efficiently in large scale systems, but also for figuring
out the directions we need to concentrate in future studies
for a more fine-grained understanding of temporal informa-
tion needs and event-related query detection methods.

5. RELATED WORK
Detecting event-related queries is emerging as an impor-

tant task in web search and retrieval. Strötgen and Gertz [21]
have explored the notion of event-based retrieval, returning
events instead of documents. Zhang et al. [23] addressed the

1343

Figure 2: Incremental performance of the J48 classifier.

classification of recurrent event queries. Metzler et al. [16]
proposed mining query logs in order to identify implicit tem-
poral queries. Moreover, they presented a ranking method
concerning temporal information needs that are not pro-
vided by a query as such. Kulkarni et al. [14] studied how
users’ information needs change over time, and Shokouhi [19]
employed different time series analysis methods for detect-
ing seasonal queries. Ghoreishi and Sun [6] introduced a
binary classification approach for detecting popular event-
related queries. While this previous work also determined
the event-relatedness of queries, they mainly focused on pop-
ular queries. We, on the other hand, not only focus on iden-
tifying popular queries, but also less popular queries with
underlying temporal intent, in which changes in query pop-
ularity cannot be observed, such as, commemorative or an-
ticipated events.

6. CONCLUSIONS
In this paper, we studied the problem of detecting event-

related queries in search streams. We considered two main
classes of event-related queries, i.e., explicit and implicit
temporal queries. We proposed a method for event detection
consisting of two main steps: 1) event candidate identifica-
tion, and 2) event-related query classification. We employed
machine learning techniques trained with a set of features,
which were derived from query logs as well as an external
document collection. In our experiments, we evaluated the
performance of different classification algorithms trained us-
ing our proposed features. To this end, we have conducted
a feature selection technique in order to identify a core set
of features, which can capture the most discriminative rep-
resentatives of different feature categories.

Acknowledgments This work was partially funded by
the European Commission for the FP7 project ForgetIT and
the ERC Advanced Grant ALEXANDRIA under the grant
numbers 600826 and 339233, respectively.

7. REFERENCES
[1] G. E. P. Box and G. Jenkins. Time Series Analysis,

Forecasting and Control. Holden-Day, Incorporated,
1990.

[2] R. Burghartz and K. Berberich. MPI-INF at the
NTCIR-11 Temporal Query Classification Task. In
Proceedings of the 11th NTCIR Conference, 2014.

[3] R. Campos, G. Dias, A. Jorge, and C. Nunes. GTE: A
distributional second-order co-occurrence approach to
improve the identification of top relevant dates in web
snippets. In Proceedings of CIKM ’12, 2012.

[4] R. B. Cleveland, W. S. Cleveland, J. E. McRae, and
I. Terpenning. STL: A seasonal-trend decomposition
procedure based on loess (with discussion). Journal of
Official Statistics, 6:3–73, 1990.

[5] Z. Dou, R. Song, and J.-R. Wen. A large-scale
evaluation and analysis of personalized search
strategies. In Proceedings of WWW ’07, 2007.

[6] S. N. Ghoreishi and A. Sun. Predicting
event-relatedness of popular queries. In Proceedings of
CIKM ’13, 2013.

[7] C. C. Holt. Forecasting seasonals and trends by
exponentially weighted moving averages. International
Journal of Forecasting, 20(1):5–10, 2004.

[8] H. Joho, A. Jatowt, and R. Blanco. NTCIR
temporalia: a test collection for temporal information
access research. In Proceedings of WWW ’14, 2014.

[9] R. Jones and F. Diaz. Temporal profiles of queries.
ACM Trans. Inf. Syst., 25, July 2007.

[10] S. R. Kairam, M. R. Morris, J. Teevan, D. J. Liebling,
and S. T. Dumais. Towards supporting search over
trending events with social media. In Proceedings of
ICWSM ’13, 2013.

[11] N. Kanhabua and K. Nørv̊ag. Determining time of
queries for re-ranking search results. In Proceedings of
ECDL ’10, 2010.

[12] N. Kanhabua, S. Romano, and A. Stewart. Identifying
relevant temporal expressions for real-world events. In
Proceedings of the SIGIR 2012 Workshop on
Time-aware Information Access (TAIA ’12), 2012.

[13] J. Kleinberg. Bursty and hierarchical structure in
streams. In Proceedings of SIGKDD ’02, 2002.

[14] A. Kulkarni, J. Teevan, K. M. Svore, and S. T.
Dumais. Understanding temporal query dynamics. In
Proceedings of WSDM ’11, 2011.

[15] V. Lavrenko and W. B. Croft. Relevance based
language models. In Proceedings of SIGIR ’01, 2001.

[16] D. Metzler, R. Jones, F. Peng, and R. Zhang.
Improving search relevance for implicitly temporal
queries. In Proceedings of SIGIR ’09, 2009.

[17] S. Nunes, C. Ribeiro, and G. David. Use of temporal
expressions in web search. In Proceedings of ECIR ’08,
2008.

[18] K. Radinsky, K. Svore, S. Dumais, J. Teevan,
A. Bocharov, and E. Horvitz. Modeling and predicting
behavioral dynamics on the web. In Proceedings of
WWW ’12, 2012.

[19] M. Shokouhi. Detecting seasonal queries by time-series
analysis. In Proceeding of SIGIR ’11, 2011.

[20] J. Strötgen and M. Gertz. HeidelTime: High quality
rule-based extraction and normalization of temporal
expressions. In Proceedings of Workshop on Semantic
Evaluation, 2010.

[21] J. Strötgen and M. Gertz. Event-centric search and
exploration in document collections. In Proceedings of
JCDL ’12, 2012.

[22] J.-R. Wen, J.-Y. Nie, and H.-J. Zhang. Query
clustering using user logs. ACM Trans. Inf. Syst.,
20(1):59–81, Jan. 2002.

[23] R. Zhang, Y. Konda, A. Dong, P. Kolari, Y. Chang,
and Z. Zheng. Learning recurrent event queries for
web search. In Proceedings of EMNLP ’10, 2010.

[24] X. Zhu, J. Guo, X. Cheng, P. Du, and H.-W. Shen. A
unified framework for recommending diverse and
relevant queries. In Proceedings of WWW ’11, 2011.

1344

