
Towards Optimising the Data Flow in Distributed
Applications

Felix Leif Keppmann
Karlsruhe Institute of

Technology (KIT), Germany
felix.keppmann@kit.edu

Maria Maleshkova
Karlsruhe Institute of

Technology (KIT), Germany
maria.maleshkova@kit.edu

Andreas Harth
Karlsruhe Institute of

Technology (KIT), Germany
andreas.harth@kit.edu

ABSTRACT
Networked applications continuously move towards service-
based and modular solutions. At the same time, web tech-
nologies, proven to be modular and distributed, are applied
to these application areas. However, web technologies have
to be adapted to the new characteristics of the involved sys-
tems – no explicit client and server roles, use of heteroge-
neous devices, or high frequency and low latency data com-
munication. To this end, we present an approach for describ-
ing distributed applications in terms of graphs of communi-
cating nodes. In particular, we develop a formal model for
capturing the communication between nodes, by including
dynamic and static data producing devices, data consuming
client applications, as well as devices that can serve as data
produces and consumers at the same time. In our model, we
characterise nodes by their frequencies of data exchange. We
complement our model with a decision algorithm for deter-
mining the pull/push communication direction to optimise
the amount of redundantly transferred data (i.e., data that
is pushed but cannot be processed or data that is pulled
but is not yet updated). The presented work lays the foun-
dation for creating distributed applications which can auto-
matically optimise data exchange.

Categories and Subject Descriptors
H.1.0 [Models and Principles]: General; D.2.11 [Software
Engineering]: Software Architectures; H.3.5 [Information
Storage and Retrieval]: On-line Information Services

Keywords
distributed applications; services; interaction patterns; com-
munication model

1. INTRODUCTION
Recent years are marked by the widespread use and adop-

tion of mobile devices and smart sensors, accompanied by

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2743044.

the Internet of Things (IoT) vision and service-based modu-
larisation and distribution of systems. In parallel, new web-
based application scenarios emerge, which no longer involve
mainly central servers and various clients but include several
heterogeneous devices. Devices become smaller and smarter
and reveal at the same time new and different characteristics
and trade-offs, e.g., in terms of energy consumption, com-
puting power, network connection, bandwidth, dynamic or
static data provision. Web-based modularisation and distri-
bution of systems, such as in the area of video sensors, track-
ing, augmented reality and virtual reality, are only some of
the recent developments in industry and research1. The in-
tegration of local and remote, mobile and stationary devices
in one distributed system has become achievable and at the
same raises new challenges.

In particular, the characteristics of new mobile and sensor-
based application areas differ from traditional web scenar-
ios, since they rely to a greater extent on communication
and data integration between several nodes in a network.
Systems are more complex in terms of distribution, modu-
larisation or integration, and the classical server and client
roles have become obsolete. For instance, it is common that
the nodes in a network of a distributed system may own
one or more roles (e.g., data source, data sink, controller,
or processor) complemented by diverse characteristics (e.g.,
standalone or embedded devices, energy-efficient low-cost
single-board computer or high performance server, mobile
or network attached device). The distributed system is com-
posed of these devices to provide a functionality of higher
value, while individual devices may be part of one or more
distributed systems.

Web services provide means for the development of open
distributed systems, based on decoupled components, as re-
quired in these emerging application areas. Web services
overcome heterogeneity and enable the publishing and con-
suming of functionalities and data of application and de-
vices. Recently the world around services on the Web, thus
far limited to traditional Web services based on Simple Ob-
ject Access Protocol (SOAP) [4] and Web Services Descrip-
tion Language (WSDL) [2], has been enriched by the pro-
liferation of services with Web Application Programming
Interfaces (APIs) conforming to the architectural principles
of the Representational State Transfer (REST) [3]. Web
APIs are characterised by their relative simplicity and their
natural suitability for the Web, relying on the use of Uni-
form Resource Identifiers (URIs) for resource identification,

1For example, the ARVIDA (http://www.arvida.de/) and
i-VISION (http://www.ivision-project.eu/) projects.

1503

http://www.arvida.de/
http://www.ivision-project.eu/

and Hypertext Transfer Protocol (HTTP) as protocol for
resource access and manipulation.

However, emerging complex distributed application sys-
tems composed of nodes with heterogeneous hard- and soft-
ware characteristics introduce new challenges. The current
shift away from classical server and client roles has impli-
cations on the communication between nodes. Traditional
web architecture assumes a request/response model, where
clients pull data from servers. In many scenarios, however,
the active role to establish the communication is no longer
mainly assigned to clients. New protocols and APIs, e.g.,
WebSockets or WebRTC [9], have been developed for these
specific use cases, providing bi-directional communication.
While both push and pull enable the data flow between
nodes, one may be less efficient in terms of optimal data
transmission, latency times or bandwidth use. These new
characteristics have implications on the traditional web ar-
chitecture based on clear client and server roles.

We exemplify the new challenges with an example sce-
nario based on a simple distributed house monitoring sys-
tem. The system monitors a single room via video images,
position tracking of people, and temperature measurements.
The video camera, the position tracking device and the ther-
mometer provide access to their data and functionality via
Web APIs. This scenario includes devices and applications
with a diverse set of characteristics to illustrate the problem
and our approach.

To enable networks based on push/pull communication,
with no strict server/client role assignment to the partici-
pating devices, this paper makes the following contributions:

• We introduce a formal model to describe a distributed
application in terms of a graph of nodes to capture
communication dependencies. Nodes are annotated
with direction of data flow and update frequencies.

• We present a basic algorithm to determine interaction
patterns (i.e., pull vs. push communication) to avoid
transfer of redundant or outdated data, thus optimis-
ing the data transfer.

The remainder of the paper is structured as follows: in
Section 2 we further motivate the problem and specify the
details of the scenario that serves as our running example.
We introduce our approach in Section 3.1, followed by im-
plied preliminaries in Section 3.2 and the network model in
Section 3.3. In Section 3.4 we present the algorithm to de-
termine interaction patterns and in Section 3.5 we show how
to apply the network model and the optimisation algorithm
to the scenario. We discuss in Section 4 enhancements to
extend the model, provide an overview of related work in
Section 5 and conclude in Section 6.

2. SCENARIO
We now introduce the scenario of a house monitoring sys-

tem in more detail.
Our distributed scenario application is build upon a num-

ber of devices and systems, all connected to the same net-
work. In particular, a panning video sensor, a thermal sen-
sor and a low-cost computer, providing a tracking service,
are composed in the application. A mobile app, a map at a
website, and a display at a screen visualise the information
for a human user. Each device provides data to or processes

Figure 1: Room monitoring scenario with video
camera, position tracking device and thermometer
as data sources, and monitor display, mobile app and
web-based map as data sinks.

data from other devices in the network at its own frequency.
Figure 1 visualises the distributed application as a network
or nodes representing the participating devices.

Node 1 – Video (N1) A panning video camera provides
a colour and a depth image thirty times per second, i.e., at
a frequency of 30 Hz. At the same time, the video camera
processes tracking information and follows the position of a
tracked person in the room. In order to follow a person, the
camera reacts every 100 ms (i.e., at a frequency of 10 Hz)
to the new position coordinates by adjusting the angle of its
electric motor.

Node 2 – Position (N2) A low-cost single-board com-
puter is connected to the network and provides body track-
ing and position coordinates of recognised people. It is ca-
pable to analyse depth images ten times per second, i.e., at a
frequency of 10 Hz. Furthermore, the applied algorithm pro-
cesses these depth images and provides every 200 ms (i.e., at
a frequency of 5 Hz) tracking information about the people
in the depth image stream.

Node 3 – Temperature (N3) A thermal sensor mea-
sures the temperature in the room once every two second,
i.e., at a frequency of 0.5 Hz. Due to the high precision,
the sensor usually provides a slightly different value at each
measurement. No further data is required by the sensor.

Node 4 – Display (N4) A monitor display, updated
thirty times per second, i.e., at a rate of 30 Hz, visualises the
current colour video and temperature. No data is provided
by the monitor to other systems.

Node 5 – App (N5) A mobile app on a smartphone or
tablet shows new colour video and temperature data once
per second, as trade-off between energy consumption and
update rate, i.e., at a frequency of 1 Hz. As a background
service the app informs the user with notifications whenever
a person is tracked or particular temperature limits are hit.
The colour video is only shown if the app is activated and
the tracking service tracks a person in the video in order to
save bandwidth, e.g., at a paid mobile connection. No data
is provided by the app to other systems.

Node 6 – Map (N6) A web-based map provides an
overview of the system, including the temperature and the
current colour video. Due to a low user-driven access rate
the websites is updated every ten seconds, i.e., at a rate of
0.1 Hz. No data is provided by the map to other systems.

1504

3. NETWORK MODEL
We now introduce our model to describe the data flow in

distributed applications, including the dynamics in terms of
devices’ input and output frequencies.

3.1 Approach
In our approach we treat a distributed application as a

graph of nodes. A single node in the graph takes over specific
tasks and may provide means to access and modify the state
of underling objects, i.e., objects which are either required as
input or are output of the tasks. These nodes are integrated
in a specific way to provide the higher-level functionality of
the distributed application. The integration is established
by transferring the state of objects between nodes, i.e., a
node may require the state of objects from remote nodes,
remote nodes may require the state of local objects, or both
at the same time. Which state transfers are required to
provide a higher-level functionality is heavily dependent on
the specific distributed application.

During runtime, a node repeatedly executes tasks, ac-
cesses the state of required objects and modifies the state
of influenced objects. Depending on the task, the rate at
which objects are accessed may differ from the rate objects
at which they are modified, e.g., a node may aggregate data
over time. We take this into consideration by distinguishing
an in-frequency, at which a node accesses the state of ob-
jects for the execution of a task, and an out-frequency, at
which a node modifies the state of objects. In addition, a
node may not require any states to execute its tasks or it
may not modify any states while executing tasks (i.e., the
in- or out-frequency is zero).

The integration requires state changes to be transferred
to the corresponding connected nodes. We consider two in-
teraction patterns – push and pull, in order to perform this
transfer. A node may either pull states from a remote node,
or get this states pushed from a remote node. Analogously,
states of objects, which are modified by the node, can be
pushed to connected nodes, or be pulled by these nodes.

In- and out-frequencies of nodes, in combination with the
different interaction patterns, raise the question when should
state changes be transferred between nodes via pull and
when via push. In a pull interaction outdated data may
be pulled, while in a push interaction data may be pushed
that cannot be processed until the next push to the remote
system. Given these characteristics, we provide a basic algo-
rithm to improve the interaction between nodes by calculat-
ing the optimal pattern, i.e., push or pull, for each data flow,
based on the in- and out-frequencies of the involved nodes.
By deploying the interaction according to the results of the
algorithm, we prevent nodes from transferring messages con-
taining data that will be discarded or was not changed and
thus minimise the overall data flow in terms of transferred
messages. The incorporation of further parameters, e.g., the
trade-off between bandwidth and latency, or processing and
bandwidth limitation, is addressed in the discussion section.

It should be noted that this approach aligns well with
the resource-oriented concepts of REST. In the context of
REST, systems are integrated as distributed applications in
a resource-oriented manner to provide a higher-value func-
tionality. For the transfer of object states these systems
expose a REST API on the network. Nodes represent such
an API, collection of resources in an API, or a resource,
depending on the particular use case. In a basic case, a

complete REST API represents a node as long as the tasks
of accessing and modifying the objects exposed by the re-
sources adhere the same in- and out-frequencies. A REST
API enables remote nodes to pull states from or push states
of object to a node. Thus, nodes may exist in the network,
which do not provide a REST API but only pull or push
states.

3.2 Preliminaries
In this section we discuss a number of preliminaries used

as the basis for the model. In particular, we do not con-
sider limitations or constraints of the network architecture,
e.g., bandwidth limitations, transport effects like technically
introduced latency, or topological restrictions like Network
Address Translation (NAT). While these have a reasonable
impact on the deployment of distributed applications, we
abstract from these constraints in this simple version of the
model.

Dependencies in the application, expressed by a data flow
between nodes, are assumed to be stable at runtime or at
least for a sufficient amount of time. One-time dependencies,
i.e., a single required state of another node without the need
for further updates, are not included and are usually handled
by a single pull.

Only active nodes are considered, i.e., nodes timing the
execution of their tasks. These nodes provide in- and out-
frequencies independently from other nodes in the graph.
Passive nodes provide functionality on demand and are driven
by the frequencies of depending nodes. In this version of
the model, these may be handled transparently but must be
considered if further characteristics are introduced.

No variable frequencies are considered. These may ap-
pear if a task of a node is triggered by an external event
(e.g, temperature changes trigger the task of a temperature
sensor) or are caused by technical inaccuracies or influences
(e.g., network load). For integration cases that require a
guaranteed transfer of all states, output queues for states in
case of pull and input queues in case of push may overcome
this limitation and handle the variances of frequencies.

3.3 Model

{F} × {I} × {O} × {P}
F ∈ {true, false}n×n

P ∈ {push, pull, both, none}n×n

I,O ∈ Rn; n ∈ N

(1)

Model. Our model of the network, as shown in Equa-
tion (1), includes information about the number (n) of in-
volved nodes, the data flow (F) between these nodes, their
in- (I) and out-frequencies (O), and the interaction pat-
terns (P) these node should execute in order to establish
the data flow.

F =


false f1,2 · · · f1,j
f2,1 false · · · f2,j

...
...

. . .
...

fi,1 fi,2 · · · false


fi,j ∈ {true, false}; i, j ∈ N

(2)

Data Flow. We model the data flow between nodes in the
graph as a matrix, as shown in Equation (2). Each entry

1505

in the matrix represents the data flow between node i and
node j, i.e., a data flow between node i and j exists (true) or
not (false). The size of the matrix is the number of nodes n
in the graph. By default, a loop data flow from a node to
itself is not allowed, i.e., the diagonal is set to false.

Fs =



N 1 2 3 4 5 6

1 true true true true
2 true true
3 true true true
4
5
6

 (3)

We apply the modelling of data flows to our scenario, shown
in Equation (3). For readability, the table lists only true
entries indicating a data flow between two nodes. The in-
stance of the matrix depends on the integration of nodes in
a distributed application, that is, every arrow in Figure 1
leads to a true entry in the matrix.

I =


i1
i2
...
ii

O =


o1
o2
...
oj


ii, oj ∈ R; i, j ∈ N

(4)

Frequencies. We model the in- and out-frequencies of
nodes as vectors, shown in Equation (4). Each pair of entries
in the vectors I and O, indexed by the node number, are the
in- and out-frequency of a node as describe in Section 3.1.
Frequencies are measured in hertz (Hz), defined as events or
cycles per second.

Is =



N Hz

1 10

2 10

3 0

4 30

5 1

6 0.2


Os =



N Hz

1 30

2 5

3 0.5

4 0

5 0

6 0


(5)

We apply the modelling of frequencies to our scenario, shown
in Equation (5). The instances of the vectors depend on
the properties of the nodes, i.e., every pair of in- and out-
frequencies in the circles of Figure 1 is a pair of entries in
the vectors.

P =


none p1,2 · · · p1,j
p2,1 none · · · p2,j

...
...

. . .
...

pi,1 pi,2 · · · none


pi,j ∈ {push, pull,both, none}; i, j ∈ N

(6)

Interaction Patterns. We model the interaction patterns
between nodes in the graph as a matrix, shown in Equa-
tion (6). Each entry in the matrix represents the interaction
pattern a node i should execute with regard to node j, i.e.,
if node i should pull, push, pull and push (both), or execute
no (none) interaction pattern with regard to node j. The
size of the matrix is the number of nodes n in the graph.
By default, a node does not execute an interaction pattern
on itself, i.e., the diagonal is set to none. The interaction

patterns for a specific scenario are calculated by the basic
algorithm presented next.

3.4 Algorithm

Algorithm 1 Basic Algorithm

Require: n, inf, outf, flow, NONE, PULL, PUSH, BOTH
Ensure: interaction

function interaction patterns(n, inf, outf, flow)
for r ← 0, n do

for c← 0, n do
if flow[r][c] ∧ outf [r] ≤ inf [c] ∧

flow[c][r] ∧ outf [c] > inf [r]
then

interaction[r][c]← BOTH
else if flow[r][c] ∧ outf [r] ≤ inf [c] then

interaction[r][c]← PUSH
else if flow[c][r] ∧ inf [c] > outf [r] then

interaction[r][c]← PULL
else

interaction[r][c]← NONE
end if

end for
end for
return interaction

end function

We use a basic algorithm to calculate the optimal inter-
action patterns for each combination of nodes – if a node
should pull data from another node, push data to another
node, or execute both pull and push patterns to send data
in both directions. It requires as input the number of nodes
in the network, all in- and out-frequencies and the data flow
matrix between nodes. The constants NONE, PULL, PUSH,
and BOTH are placeholders for interaction pattern. The al-
gorithm returns as output the interaction pattern for each
node in relation to each other node.

Flow Condition R C
R→ C outR ≤ inC PUSH
R→ C outR > inC PULL
R← C outC ≤ inR PUSH
R← C outC > inR PULL
R↔ C outR ≤ inC ∧ outC ≤ inR PUSH PUSH
R↔ C outR > inC ∧ outC > inR PULL PULL
R↔ C outR ≤ inC ∧ outC > inR BOTH
R↔ C outR < inC ∧ outC ≤ inR BOTH

Table 1: Decision Table of the Algorithm

Table 1 lists all decisions made by the algorithm with their
conditions and the derived interaction patterns. For read-
ability, NONE-entries are not shown.

Ps =



N 1 2 3 4 5 6

1 push
2 both
3 push push
4
5 pull pull
6 pull pull

 (7)

1506

We apply the algorithm on our scenario and calculate the
interaction patterns Ps, shown in Equation (7). The algo-
rithm is executed with n = 6, implementations of Is, Os, and
Fs as inf , outf , and flow. The constants PULL, PUSH,
BOTH, and NONE are set to pull, push, both, and none.
For readability, none-entries are not listed.

3.5 Scenario Solution

Figure 2: Room monitoring scenario with deter-
mined direction of data flow.

Figure 2 visualises the solution calculated by the algo-
rithm in Section 3.4. Dashed arrows between nodes imply,
in contrast to data flows in Figure 1, the direction of interac-
tion and are labelled by the corresponding interaction pat-
tern. By deploying the interaction between nodes, the data
flow is established and the amount of redundantly pulled or
discarded pushed data is minimised.

For example, the data flow from node 2 to node 5 is re-
alised by a pull of the data from node 2 by node 5. Node 5
pulls data one time per second (in-frequency) and will not
receive redundant data, since the data at node 2 is changed
five times per second (out-frequency). During a push of data
from node 2 to node 5 four out of five messages would be
discarded by node 5.

Frequency Redundant Discarded
Solution 48.4 0 0
Push-only 131.5 0 83.1
Pull-only 83.4 35 0

Table 2: Comparison of the solution to push- and
pull-only interaction.

Table 2 lists aggregated estimate figures for the compar-
ison of the solution to a push-only and a pull-only interac-
tion. Included are the accumulated overall frequencies in
the node graph, the accumulated redundantly pulled pack-
ages and the accumulated discarded pushed packages. By
adapting the derived optimised interaction patterns the so-
lution provides the lowest overall frequency and no messages
are transferred, which are redundant or discarded. In com-
parison, push-only causes the highest overall frequency and
the most discarded messages. Pull-only, provides in this
particular scenario an overall frequency, which is in between
the two previous cases, and thus some messages with re-
dundant data are pulled. The frequency serves also as an
indicator for bandwidth consumption between the different
approaches. Nevertheless, the payload of messages has to be

taken into account in order to be able to make statements
about the technical bandwidth usage.

4. DISCUSSION
We now discuss further relevant criteria that can be added

to enhance our basic communication model. In particular,
some further characteristics of distributed applications can
be of importance in deployment scenarios and can have im-
pact on the communication between the nodes. For instance,
we plan to integrate bandwidth and latency as additional
factors. While the number of transferred messages already
have an indirect effect on the used bandwidth in different
interaction scenarios, the bandwidth limitations set by the
network connection are not considered so far. In a deployed
network, the size of transferred data makes a difference (for
example, the small size of positioning data of a tracking
device compared to relatively large image data of a video
sensor). By including information about the message pay-
load (i.e., the size of data transferred between two nodes)
we are able to assess the required bandwidth and to take
bandwidth limitations into account.

The importance of latency, the second characteristic we
aim to include in the model, largely depends on the use case.
In classical web scenarios the latency plays a minor role –
the technically introduced latency of a request to a Web API
should be small enough, but the latency with regard to the
last state change is not important. In emerging integration
scenarios, such as in the area of depth sensors, tracking and
visualisation, latency is much more relevant. For example,
the time lag between a movement in reality and the reaction
time of an augmented reality impacts the usability of the
system. Since the decision between pull or push interaction
has an impact on latency, we aim to integrate latency in our
model.

The data flow between nodes is so far treated indepen-
dently – the decision of whether to push or pull is calcu-
lated for each connection separately. In a graph of nodes,
in particular if we consider further characteristics such as
bandwidth, the communication between two nodes may not
be independent from others. For example, connecting one
depth sensor compared to connecting dozens of depth sen-
sors to a tracking device makes a difference. The exam-
ple points out two interdependencies, network topology and
processing power. We consider to evaluate the integration
of interdependent nodes, which e.g., share a single band-
width limitation, or latency constraint. Furthermore, the
processing power of a node may be limited and thus expose
restrictions on the amount and frequencies of in- and outgo-
ing data flows.

The algorithm we presented in Section 3.4 implements a
decision function that aims to minimise the number of trans-
ferred messages between two communicating nodes. Intro-
ducing further characteristics, such as bandwidth or latency,
allows for assessing different trade-offs. For example, we may
reduce latency by using more bandwidth through extensive
push. In contrast, the reduction of latency may depend on
the type of network (e.g., a local network or a paid mo-
bile connection). We evaluate the possibility of introducing
costs for different parameters, which can serve as weights in
decision function.

1507

5. RELATED WORK
Related work has already been conducted in several do-

mains, including economics and business administration. In
relation to this work, we take into consideration existing re-
search on IoT, and on scheduling and optimisation in sensor
networks.

In the context of IoT [5, 6] propose the use of established
web technologies, i.e., the integration of smart things fol-
lowing the REST architectural style. The main target of
IoT is the connection and combination of various network-
enabled devices and virtual artifacts – smart things – to
distributed applications. This integration is primarily based
on network connectivity between the objects but may lead
to incompatible digital islands, i.e., distributed applications
in IoT that are closed environments By opening these dig-
ital islands via common web technologies, i.e. REST, the
authors introduce the Web of Things (WoT) vision. The
WoT approach supports our viewpoint on distributed ap-
plications consisting of a network of relatively independent
nodes and the data flow between this nodes, enabled by push
or pull interaction. In [6] the authors evaluate the impact
of HTTP and the interaction direction in a purely resource-
oriented scenario and a scenario with syndication of things.
In particular, they measure the effect on latency in different
interaction scenarios.

The authors in [1] discuss different deployment strate-
gies to avoid the decrease of sensor network lifetimes caused
by high energy consumption of specific important network
nodes. They propose a general model to asses and compare
these strategies under certain restrictions as well as to cal-
culate the deployment costs with a specific strategy. For
the scenario of a sensor network deployed over an area for
surveillance, [8] propose a cost model approach to determine
an optimal distribution of sensing nodes and nodes, which
act as cluster heads. Factors taken into account are the en-
ergy per sensor type and intensity of distribution per node
type, to guarantee a specific lifetime and equal power con-
sumption. For large wireless ad-hoc networks [7] propose
a combination of pull- and pushed-based strategies to op-
timise the routing for specific information needs. Thereby,
the query frequencies are take into account. Compared to
our work these approaches focus more on including factors
specific to the deployment of sensors, e.g., power consump-
tion, wireless strength or equipment costs, while we focus
more on the optimisation of general issues in a network of
data producing and consuming nodes.

6. CONCLUSION
Our approach is a first step towards capturing the dynam-

ics of distributed applications in terms of devices’ input and
output frequencies. While our model already supports the
description of the data flow in a distributed application, we
still see different options for extensions, leading to a more
detailed representation and, in return, to a more optimised
application. In particular, possible extensions include the
modelling of further characteristics, interdependencies be-
tween nodes and data flows, and the consideration of costs.

In summary, we introduce a way for describing distributed
applications based on frequencies of integrated nodes, an ap-
proach to formalise this description in a model and an al-
gorithm for optimising the interaction patterns by utilising
the model. Part of our future work is to evaluate which

extensions can be integrated, either in the model or in the
algorithm. With our view on distributed applications we
provide the means to deal with emerging application sce-
narios that pose new requirements on the integrations of
systems, thus far unsupported by traditional client/server-
based communication patterns.

7. ACKNOWLEDGMENTS
This work was supported by the German Ministry of Ed-

ucation and Research (BMBF) within the project ARVIDA
(FKZ 01IM13001G).

8. REFERENCES
[1] Z. Cheng, M. Perillo, and W. B. Heinzelman. General

Network Lifetime and Cost Models for Evaluating
Sensor Network Deployment Strategies. IEEE
Transactions on Mobile Computing, 7(4):484–497, Apr.
2008.

[2] R. Chinnici, J.-J. Moreau, A. Ryman, and
S. Weerawarana. Web Services Description Language
(WSDL) Version 2.0 Part 1: Core Language.
Recommendation, W3C, June 2007.
http://www.w3.org/TR/2007/REC-wsdl20-20070626.
Latest version available at
http://www.w3.org/TR/wsdl20.

[3] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
University of California, Irvine, USA, 2000.

[4] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau,
H. F. Nielsen, A. Karmarkar, and Y. Lafon. SOAP
Version 1.2 Part 1: Messaging Framework (Second
Edition). Recommendation, W3C, Apr. 2007. http:
//www.w3.org/TR/2007/REC-soap12-part1-20070427/.
Latest version available at
http://www.w3.org/TR/soap12-part1/.

[5] D. Guinard, V. Trifa, F. Mattern, and E. Wilde. From
the Internet of Things to the Web of Things:
Resource-oriented Architecture and Best Practices. In
Architecting the Internet of Things. Springer Berlin
Heidelberg, 2011.

[6] D. Guinard, V. Trifa, and E. Wilde. A Resource
Oriented Architecture for the Web of Things. In
Proceedings of the Internet of Things Conference, 2010.

[7] X. Liu, Q. Huang, and Y. Zhang. Combs, Needles,
Haystacks: Balancing Push and Pull for Discovery in
Large-Scale Sensor Networks. In Proceedings of the
Conference on Embedded Networked Sensor Systems,
2004.

[8] V. P. Mhatre, C. Rosenberg, D. Kofman,
R. Mazumdar, and N. Shroff. A Minimum Cost
Heterogeneous Sensor Network with a Lifetime
Constraint. IEEE Transactions on Mobile Computing,
4(1):4–15, Jan. 2005.

[9] A. Narayanan, C. Jennings, A. Bergkvist, and
D. Burnett. WebRTC 1.0: Real-time Communication
Between Browsers. Working draft, W3C, Sept. 2013.
http://www.w3.org/TR/2013/WD-webrtc-20130910/.
Latest version available at
http://www.w3.org/TR/webrtc/.

1508

http://www.w3.org/TR/2007/REC-wsdl20-20070626
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/2013/WD-webrtc-20130910/
http://www.w3.org/TR/webrtc/

	Introduction
	Scenario
	Network Model
	Approach
	Preliminaries
	Model
	Algorithm
	Scenario Solution

	Discussion
	Related Work
	Conclusion
	Acknowledgments
	References

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20150317151613
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Down
 23.8320
 0.0000

 Both
 6
 AllDoc
 6

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150317151613
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Left
 7.2000
 0.0000

 Both
 6
 AllDoc
 6

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 6
 5
 6

 1

 HistoryList_V1
 qi2base

